Chapter 13
EXPressions (updated 10-June-2024)

This chapter describes the expression services in HCA. Expressions are used like in a traditional
programming language to change the value of a variable.

This chapter covers these topics:

e Introduction to HCA expressions

e The Visual Programmer Compute and Compute Test elements
e The expression builder

e Managing variables

e Important uses of variables besides the Visual Programmer

e Error handling

e Expression syntax and built-in functions

In many cases the simpler variable values — Yes and No — and the three Visual Programmer
elements — Make variable yes, Make variable No, and Not variable- are sufficient for applications.
The Compute and Compute test elements are used for more sophisticated programming.

Introduction to expressions

As described in the chapter on the Visual Programmer, HCA variables are usually used with
simple Yes and No values. But in addition to those you can create and manipulate variables that
can store text, numeric, Boolean, or date-time values.

Each variable can contain data of any type. HCA converts the data to the type it needs for the
operator being evaluated. For example, consider these expressions:

a=10
b=20
c="Theresultis" + (a+b)
d = #01-01-2001#
e=a-"8"
After these expressions are evaluated:
a is a number with value 10
b is a number with value 20
c is a string with value "The result is 30"
dis a date
e is a number with value 2

If you understand, or can learn about, how expressions in traditional programming languages like
Visual Basic work, you will understand HCA expressions.

The Home Control Assistant 1

Chapter 13—Expressions

Compute and Compute-Test visual programmer elements

To use these expressions two visual programmer elements are available: Compute and Compute
Test.

The properties of the Compute element are:

B ' Compute Properties @
This element evaluates one or more expressions
MotionLocation="0ffice"; -

OfficeCheckinTime=_now()

(e (o] [
[ok | [cancel | ¢

In the Compute element is placed a series of expressions each separated by semicolons.
<variable name> = <expression> ;

<variable name> = <expression> ;

<variable name> = <expression>

When the compute element is executed, the expressions are evaluated and the computed values
assigned to the named variables. Expressions are executed in sequential order.

The Compute Test element contains a single expression that is evaluated to determine a yes or no
value. If the value is "yes" the path marked "yes" in the program is taken from the Compute Test
element, and likewise for "no".

i ' Compute Test Properties I&

This element evaluates an expression and executes different elements based upon the resutt

sensorTime + _hours(48) < _now() %

(i) () (v
[ok | [cancel | V

e

In both these elements the Validate button is used to check that the expression you have entered is
correct — it matches the syntax that HCA expects.

2 The Home Control Assistant

Chapter 13—Expressions

A lot of work went into the Visual Programmer to allow HCA users to create programs without all
the baggage of existing programming languages — careful syntax, programming terms and
concepts. These two elements take a step back from that and leave you in the realm of the
programmer. If you have never used, for example, Visual Basic, or all this sounds Greek to you,
stick with simple yes and no variables managed with the visual programmer elements for them.
You can do many wonderful things with them alone.

Expression builder

To help you create expressions, rather then always having to refer to this documentation, HCA
contains a tool called the Expression Builder.

On dialogs where you enter an expression, a button labeled Expression Builder helps you compose
your expression. Pressing this button opens the builder tool.

Expression Builder
Ingert What? Function
(®) Function string = _Right {string, n) v
(") Constant
() Variable Returns the right 'n' characters of a string.

() Device name
(") Program name
() Group name
Funetions Arg1 | String !
[] Action

[File Ops

[Formatting
[JJson

[Lookup

[Mise

String

[] Test/Conversion
[] Thermostat

[Time/Date

[Weather

Ang2 |Mumber Tl}

Cancel

The “Insert what?” box specifies what sort of item you are inserting. The most common case is
one of the HCA built-in functions.

The “Functions” box lets you limit the number of choices of the possible functions you have to
choose from.

The third section of the dialog changes depending upon what you are inserting. In the picture
above, a function is being inserted. Choose the name of the function in the dropdown and two
things display: a short explanation of what it does, and the parameters to the function. In this
example, the _right function takes two arguments. You can simply type in the two arguments, or
to get more assistance, press the button next to the argument. This opens this dialog:

The Home Control Assistant

Chapter 13—Expressions

Select an argument L_Jih

House - Go To Bed P

" Flag Houge - Kill Doorbell
House - Late night sweeper

" Canstart House - Leave and Fetumn
Housze - Leave and Return waiter

" Device name Hiousze - Pathway Garage to Bedroom

. Houge - Pathwway Lower o Upper

o

Houge - Pathweay Media to Bed
House - Reset to full ilurmination

" Group name Library - Library Key A
o Library - Library Key B =
Display name Library - Library Key C
Library - Library Key D
" lcon Library - Library Key Off

Library - Library Key On

M ain bedroom - Bedroom Control Panel

b ain bedroom - Main bedroom dawn

b air bedroom - Master bathi

tain bedroom - Mazter bath2 -

0]:4 | Cancel |

ke

This dialog lets you insert common things that you may want to work with. Things like the names
of the objects in your design, variables, and constants.

When you close the Expression Builder, the constructed expression is inserted into the text of the
element properties at the cursor. Or it replaces the current selection if there is one.

Managing Variables

An important point about variables is that they usually get created when expressions are evaluated.
When a program is executed any new variables that are used in its expressions appear in the
variables list in the variable inventory dialog.

The variable inventory dialog is described in the chapter on design tools.

Other uses for expressions

In addition to using expressions in the Compute and Compute Test visual programmer elements,
you can place expressions in other elements. Just enclose the expression in %’s. When the
element is executed, the expression is evaluated and the result in text form replaces the % enclosed
section. For example, to show the value of an expression, use this text in the ShowMessage
element:

The value of beta is %betal + beta2%
If your string wants to display a percent sign, use two in the string:
Inside humidity is %humInside%%%

In these elements, an Embed Expression button appears. This lets you build an expression then
encloses it in %’s when it places the expression into the element’s properties.

To see in which elements an embedded expression can be used, see technical note titled
“Parameter and expression use in program elements”.

4 The Home Control Assistant

Chapter 13—Expressions

Error Handling

Because these elements happen at a more complex layer of HCA than most elements, errors can
happen that could not be detected in the Visual Programmer. If errors occur while executing these
elements, the errors are logged, the Compute or Compute Test element is abandoned, and
execution continues with the next element. In the case of the Compute Test element execution
follows the Yes path. These errors show up with a red "P" marker and can be filtered as an Error.

Some of the possible errors are:

o Naming a device, thermostat or a magic module as an argument to a function and no device,
thermostat, or magic module with that name in your design.

e Divide by zero.
e Using a weather function but no weather provider available.
e Trying to construct a date-time with something out of range. Like a month of 13.

Expression Syntax

HCA expressions are very similar to expressions in any programming language like Visual Basic
or VBScript. The usual operators are available:

Comparison operators <><=>=<>==
Note that the operator that checks for equality is 2
equal signs not one

Arithmetic operators +-* /mod - (unary minus) + (unary plus)
Logical operators and or not
Binary operators Binary or operator is a Vertical bar |

Binary and operator is an Ampersand &

Binary not operator is a circumflex #

Date and Time constants Enclosed in #'s as: #1/15/2001 07:19 AM#

Boolean constants Yes No True False

String constants Can be enclosed in single or double quotes

Variables If the name of that variable has a blank in it, enclose
the variable name in square brackets. For example
[My Variable]

Tags

A “tag” is simply a name-value pair associated with an object in your design. The name can be
any valid HCA name and the value is any text string. You can associate up to 8 “tags” with a
room, device, program, group, or keypad.

What are tags good for? That is up to your design. You can use them to associate any piece of data
with an object. The key idea behind tags is that programs can manipulate them — adding, deleting,
and seeing if a device has a tag or a specific value of a tag. In this way you can have programs
save data in a tag of an object and then later another program can read it out. In some ways they
are like global variables except that the value is specific to each object.

In the properties dialog there is a “Tags” tab where the current tags assigned to an object are
shown with their values. Using this you can view and modify tags and their values from the UI.

The Home Control Assistant

Chapter 13—Expressions

| Name I Netes | Room I Type I Address I Options I Poll I Triggers I Restart | lcan | Display I Log I Gmuﬂ
| Schedule | Referenced By | Power Track | Green | Tags

Tag Name Current Value
TopRange 10

BottomRange 2

"Tags" are name-value pairs associzted with devices. programs, groups. folders. rooms. and displays that your programs can manipulate.

“You can view and modify them here but they are usually manipulated by programs.

In addition to manually viewing and changing, these expression functions are available and
described in the Lookup Functions section below:

e ObjectTagGet
e ObjectTagSet
e ObjectTagDelete
e ObjectTagExists

Expression functions

In the expressions used in the Compute and Compute-Test elements, you can use the built-in
functions that HCA provides. Some of these are very general and can be found in almost any
programming language, and others are specific to HCA.

Some notes on the function-by-function list below:

e Inthe list of functions below, some have optional parameters. These are designated by
showing the parameter in []’s

e All functions return some value and in the Compute element you must assign that value to a
variable. In the function list below if the result isn’t useful, it is designated as “void”.

e Increating expressions there are several functions that HCA provides. Some of these are very
general and can be found in almost any programming language, and others are specific to
HCA.

e All functions provided by HCA begin with the underscore character. If none of your variable
names begin with an underscore, if in subsequent versions of HCA new functions are added,
none of your variable names will conflict with any new function names. The case of the name
is not important, so the left trim function can be written Ltrim or Itrim.

6 The Home Control Assistant

Chapter 13—Expressions

String functions

The string functions are identical to the Visual Basic functions of the same name.

Name Asc

Result type Number

Parameters (string)

Action Returns the ASCII value of the 15t character of the string

Example _Asc(“A”) —> 65

Name Chr

Result type String

Parameters (number, [# of repeats])

Action Returns a one-character string of the ASCII character number unless the second
argument is supplied then that tells the number of repeated characters to return.

Example _Chr(65) > “A”
_Chr(65, 3) > “AAA”

Name DecToHex

Result type String

Parameters (number, # of hex digits)

Action Converts a number to a string where the value is expressed in hexadecimal

Example _DecToHex(100,2) — “64”

Name HexToDec

Result type Number

Parameters (string)

Action Converts a string containing hex characters into a number. Undefined if there are non-
hex characters in the string.

Example _HexToDec(“64”) — 100

Name InStr

Result type Number

Parameters (string, string)

Action Finds the location of a string within another string. Returns the character position
where the 1%t character is 1. Returns 0 if not found.

Example _InStr("webber", “bb”) — 3

The Home Control Assistant

Chapter 13—Expressions

Name LTrim

Result type String

Parameters (string)

Action Trims white-space characters from the left side of a string

Example _LTrim(" example") —» “example”

Name Lcase

Result type String

Parameters (string)

Action Make a string lowercase

Example _Lcase("Webber") —» “webber”

Name Left

Result type String

Parameters (string, number)

Action Returns the leftmost ‘n’ characters

Example _Left("webber", 3) > “web”

Name Len

Result type Number

Parameters (string)

Action Returns the number of characters in the string

Example _Len("webber") > 6

Name Match

Result type Bool

Parameters (string, pattern string)

Action Performs a regular expression match between the supplied string and pattern. If the
expression matches the pattern, then the function returns yes.

Example _Match(“00773”, “00.*") — yes

The Home Control Assistant

Chapter 13—Expressions

Name Mid

Result type String

Parameters (string, start at #, [# of characters])

Action Returns characters from the start position for the supplied length. The first character in
the string is 1. If the second argument is omitted the remainder of the start starting
from the start position is returned.

Example _Mid("webber", 2, 3) > “ebb”

Name RTrim

Result type String

Parameters (string)

Action Trims white-space characters from the right end of the string

Example _RTrim ("webber ") — “webber”

Name Right

Result type String

Parameters (string, # characters)

Action Returns the rightmost ‘n’ characters from a string

Example _Right("webber", 2) — “er”

Name TextPiece

Result type String / Bool

Parameters (string, piece #, delimiter string)

Action Returns the nth piece of the string that contains sections of text between delimiters. If
there is no nth piece in the string a bool of No is returned.

Example _TextPiece("apple,banana,grape", 2, “,”) — “banana”

Name TextReplace

Result type String

Parameters (string, find string, replacement string)

Action Replaces one string for another within a string.

Example _TextReplace("speed 10 mph", "mph", “miles per hour”) — “speed 10 miles per hour”

The Home Control Assistant

Chapter 13—Expressions

Name Trim

Result type String

Parameters (string)

Action Trims white-space characters from the left and right ends of a string.
Example _Trim(" webber ") > “webber”

Name Ucase

Result type String

Parameters (string)

Action Uppercases a string.

Example _Ucase("webber") - “WEBBER”

Test / Conversion functions

10

These functions are generally useful in creating programs, and many are like the corresponding
Visual Basic functions.

Name Abs

Result type Number

Parameters (number)

Action Returns the absolute value of the number

Example _Abs(-87) — 87

Name Choose

Result type Any

Parameters (number, any, any, ...)

Action Returns as its result the Nth argument. The 15t argument chooses which argument to be
returned. The any arguments can be of any types and there can be up to 10 of them

Example _Choose (3, “Jan”, “Feb”, “Mar”, “Apr”, “May”) — “Mar”

Name HexToAscii

Result type String

Parameters (string)

Action Assumes the text to be the text form of a series of 2-byte hex numbers. Returns a string
decoded into the corresponding ASCII characters. See example.

Example _HexToAscii (“41 42 43”) — “ABC”

The Home Control Assistant

Chapter 13—Expressions

Name IIF
Result type Any
Parameters (bool, any1, any2)
Action Returns anyl if the 15t argument is yes. Otherwise returns any2.
Example _lIF (yes, “red”, “blue”) — “red”
Name Int
Result type Number
Parameters (any)
Action Converts the argument to a number if not already a number and returns it discarding
any fractional part
Example _Int(412.87) > 412
_int(“412.87”) — 412
_int(“abc”) > 0
_int(“”)—>0
Name IsBool
Result type Bool
Parameters (any)
Action Returns YES if the argument contains a bool value with no type coercion or an
expression that evaluates to a bool.
Example _IsBool(TRUE) — Yes
_lsBool(1) - No
Name IsDate
Result type Bool
Parameters (any)
X Returns YES if the argument contains a datetime value with no type coercion or an
Action .)
expression that evaluates to a dateTime.
Example _IsDate(“web”) — No
Name IsEven
Result type Bool
Parameters (number)
Action Returns YES is the argument is an even number
Example _IsEven(13) — No

The Home Control Assistant

11

Chapter 13—Expressions

Name IsNumber

Result type Bool

Parameters (any)

Action Returns YES if the argument contains a number value with no type coercion or an
expression that evaluates to a number.

Example _IsNumber(“412”) — No
_IsNumber (412) — Yes

Name IsOdd

Result type Bool

Parameters (number)

Action Returns YES is the argument is an odd number

Example _1s0dd(13) — Yes

Name IsText

Result type Bool

Parameters (any)

Action Returns YES if the argument contains a text value with no type coercion or an
expression that evaluates to text.

Example _IsText(“hello there”) — Yes
_IsText(400) - No

Name Max

Result type Number

Parameters (number, [number], [number], ...)

Action Returns the maximum value of the arguments given. Up to 10 arguments.

Example _Max(10, 50, 13, 17) —» 50

Name Min

Result type Number

Parameters (number, [number], [number], ...)

Action Returns the minimum value of the arguments given. Up to 10 arguments.

Example _Min(10, 50, 13, 17) —» 10

12

The Home Control Assistant

Chapter 13—Expressions

Name Num

Result type Number

Parameters (any)

Action Converts the argument to a number if not already a number. Generally, not needed

because HCA converts between strings and numbers as needed.

Example _Num(“100”) — 100
_Num(“abc”) - No
_Num (“”)—> No

Name Round

Result type Number

Parameters (number)

Action Rounds the number to the nearest integer
Example _Round(402.6) — 403

The Home Control Assistant
13

Chapter 13—Expressions

Time and date functions

14

For the examples below, assume that the current time is 02:12:45 pm and the current date is
Friday 28-September-2018

Name Date

Result type DateTime

Parameters (year #, month #, day#)

Action Constructs a datetime value from the supplied year, month, and day. Year is the 4-digit
year, month is 1-12, day is 1-31

Example _Date(2018, 9, 28) — 28-Sep-2018

Name DateTime

Result type DateTime

Parameters (year #, month #, day#, hour#, minute#, second#)

Action Constructs a datetime value from the supplied year, month, day, hour, minute, second.
Year is the 4-digit year, month is 1-12, day is 1-31, hour is 0-23, minute is 0-59, and
second is 0-59

Example _DateTime(2018, 9, 28, 14, 16, 30) — 28-Sep-2018 2:16:30pm

Name Day

Result type Number

Parameters (dateTime)

Action Returns the day from a dateTime

Example _Day(_Now()) — 28

Name DayOfWeek

Result type Number

Parameters (dateTime)

Action Returns the weekday from a dateTime as a number from 1 to 7, where 1 is Sunday

Example _DayOfWeek(_Now()) »> 6

Name DayOfYear

Result type Number

Parameters (dateTime)

Action Returns the ordinal number of the day of the year

Example _DayOfYear(_now()) —» 271

The Home Control Assistant

Chapter 13—Expressions

Name Days

Result type DateTimeSpan

Parameters (#days)

Action Creates a date time span equal to the number of days

Example _Now() + _Days(1) — Saturday 28-September-2018 02:12:45 PM

Name Hour

Result type Number

Parameters (dateTime)

Action Returns the hour of a date time

Example _Hour(_Now()) > 14

Name Hours

Result type DateTimeSpan

Parameters (#hours)

Action Creates a date time span equal to the number of hours

Example _Now() + _Hours(2) — Friday 28-September-2018 04:12:45 PM

Name LocalToUTC

Result type DateTime

Parameters (dateTime)

Action Convert a local time to UTC. The conversion is done by Windows so the local time zone
and DST setting as set in Windows is used.

Example _LocalToUTC(_Now()) — Friday 28-September-2020 04:12:45 PM

Name Minute

Result type Number

Parameters (dateTime)

Action Returns the minute of a date time

Example _Minute(_Now()) —> 12

Name Minutes

Result type DateTimeSpan

Parameters (#minutes)

Action Creates a dateTimeSpan equal to the number of minutes

Example _Now() + _Minutes(10) — Friday 28-September-2018 02:22:45 PM

The Home Control Assistant
15

Chapter 13—Expressions

16

Name Month

Result type Number

Parameters (dateTime)

Action Returns the month of a date time

Example _Month(_Now()) > 9

Name MonthName

Result type String

Parameters (month#, [use full name?])

Action Returns the name of the month as a text string. If the optional 2" argument is supplied
and is yes, the full name is generated otherwise an abbreviation is used.

Example _MonthName(_now(), yes) — “September”

Name Now

Result type DateTime

Parameters none

Action Returns as a datetime the current date and time

Example _Now() — Friday 28-September-2018 02:12:45 PM

Name ParseTime

Result type DateTime / Bool

Parameters (“datetime text”)

Action Parses the argument into a dateTime. Returns that datetime if the parse worked.
Returns a Bool No if not.

Example _ParseTime(“10/4/2018 5:34:44 AM”) — #10/4/2018 5:34:44 AM#

Name Second

Result type Number

Parameters (dateTime)

Action Returns the second part of a date time

Example _Second(_Now()) — 45

Name Seconds

Result type DateTimeSpan

Parameters (#seconds)

Action Creates a dateTimeSpan equal to the number of seconds

Example _Now() + _Seconds(10) — Friday 28-September-2018 02:12:55 PM

The Home Control Assistant

Chapter 13—Expressions

Name Sunrise

Result type DateTime

Parameters None

Action Returns the sunrise time for the current location

Example _Sunrise() — 9/28/2018 7:03 AM

Name Sunset

Result type DateTime

Parameters None

Action Returns the sunset time for the current location

Example _Sunset() — 9/28/2018 6:57 PM

Name Time

Result type DateTime

Parameters (hour, minute, second)

Action Creates a dateTime with the given hour, minute, and second
Example _Time(14, 20, 0) — 02:20:00 PM

Name TimeSpan

Result type DateTimeSpan

Parameters (days, hours, minutes, seconds)

Action Creates a dateTimeSpan with the given values

Example _Now() + _TimeSpan(0, 1, 20, 0) — Friday 28-September-2018 03:32:45 PM
Name TotalHours

Result type Number

Parameters (dateTimeSpan)

Action Returns the total number of hours represented by the time span
Example _TotalHours(_TimeSpan(0, 1, 30, 0)) —» 1.5

Name TotalMinutes

Result type Number

Parameters (dateTimeSpan)

Action Returns the total number of hours represented by the time span
Example _TotalMinutes(_TimeSpan(0, 1, 30, 0)) — 90

The Home Control Assistant

17

Chapter 13—Expressions

Name TotalSeconds

Result type Number

Parameters (dateTimeSpan)

Action Returns the total number of seconds represented by the time span

Example _TotalSeconds(_TimeSpan(0, 1, 30, 0)) — 5400

Name UTCTolocal

Result type DateTime

Parameters (dateTime)

Action Convert a UTC time to local time. The conversion is done by Windows so the local time
zone and DST setting as set in Windows is used.

Example _UTCToLocal(_Now()) — Friday 28-September-2020 04:12:45 PM

Name Weekday

Result type String

Parameters (#days ago)

Action Returns the three-letter abbreviation of the weekday. (0) = today, (1) = yesterday, (2) =
2 days ago, etc.

Example _Weekday(2) —» “Wed”

Name WeekdayName

Result type String

Parameters (number, [full name?])

Action Returns a string of the weekday name. Sunday is numbered 1, and Saturday is
numbered 7. If the second argument is supplied and is YES, the full name is returned,
otherwise the 3-letter abbreviation is returned.

Example _WeekdayName(_DayOfWeek(_Now()), No) — “Fri”

Name Year

Result type Number

Parameters (dateTime)

Action Returns the year of the dateTime

Example _Year(_Now()) —» 2018

There are four major uses of the time functions in the Compute element. These are:

e Determine how long something took. This is done by:

t=_Now()

18

The Home Control Assistant

Chapter 13—Expressions

... do something...

timeltTook = _Now() - t

e Add or subtract from the current time to generate a date-time in the past or future:

TwentyFourHoursAgo = _Now() - _days(1)

SixAndAHalfHoursAgo = _Now() - _timeSpan(0, 6, 30, 0)

e Compose a date-time from its component parts:

t=_DateTime(2018, 9, 28, 14, 12, 45)

e Format a date-time to a string:
s=_FormatTime(_Now(), "$d-Sb-Sy SH:SM")
This would show as "28-Sep-18 14:12"

Formatting functions

Name Formatint

Result type String

Parameters (#, #digits, [leading zeros?])

Action Convert a number to a string with no fractional part. If the 3rd argument is supplied as
YES, the string is formatted with leading zeros.

Example _Formatint(100.5, 4, 1) —» "0100"

Name FormatNum

Result type String

Parameters (#, #decimal places)

Action Converts the number to a string with the given number of digits after the decimal point

Example _FormatNum(1.6764, 1) — "1.6"

Name FormatPattern

Result type String

Parameters (#, “pattern”)

Action Convert a number to a string according to the pattern. The pattern uses the same
characters as that used for the C programming language sprintf function. Look online for
references to sprintf. The only difference is the S character is used instead of the %
character in the pattern.

Example _FormatPattern (412.543, “$f.1”) — "412.5"

The Home Control Assistant

19

Chapter 13—Expressions

20

Name FormatTime
Result type String
Parameters (dateTime)

Action string made up of replacements from the following table.

Example _FormatTime(_now(), “Sd-Sb $I:5M $p”) — “28-Sep 2:12 pm”

FormatTime pattern characters:

Pattern marker Meaning
Sa Abbreviated weekday name
SA Full weekday name
Sb Abbreviated month name
SB Full month name
Sc Date and time appropriate for locale
Sd Day of month as number (01-31)
SH Hour in 24-hour format (00-23)
Sl Hour in 12-hour format (01-12)
Sj Day of year as a number (001-366)
Sm Month as a number (01-12)
SM Minutes as a number (00-59)
Sp Current locale’s AM/PM indicator for 12-hour clock
SS Second as a number (00-59)
SU Week of year as a number, with Sunday as the first day of the week (00-51)
Sw Weekday as a number (0-6). Sunday is 0.
SW Week of year as number with Monday as the first day of the week (00-51)
Sx Date representation appropriate for locale
SX Time representation appropriate for locale
Sy Year without century as a number (00-99)
SY Year with century as number
Szor$z Time-zone name or abbreviation. Blank if not known
$$ Dollar sign

The Home Control Assistant

Returns a string of the date-time formatted according to the pattern. The patternisa

Chapter 13—Expressions

Action functions

These functions perform actions on your devices, programs, and groups in your design.

Name AutoOffTime

Result type Date-time / Bool

Parameters (“device name”)

Action Returns the date-time when the named device/room auto off timer will expire.
If there is no auto off timer running for the named device/room, a Boolean value of NO
is returned. This can be tested for with _IsBool function.

Note: This function only reports the auto off time. You can make changes to the auto off
timer and settings for a device using the Auto-Off programmer element.

Example _AutoOffTime(“Kitchen — Lights”) — No

Name ChangeSchedule

Result type Bool

Parameters (“schedule entry name”, code#, timel, [time2])

Action Modifies the schedule entry with the given name. The codes are:

0 = Change On Time, 1 = Change Off Time, 2 = Change On and Off Time.
With code 2 you must supply the 4th argument.
Returns YES if the modification is made, NO otherwise.

Example _ChangeSchedule(“OutsideSet”, 0, _Time(20,0,0)) — Yes
This sets the on time of the schedule entry to 8pm

Name ModifySchedule

Result type Bool

Parameters See below

Action _MaodifySchedule is a more capable replacement for _ChangeSchedule
The first argument to ModifySchedule is a code that defines what the operation is. This
is followed by up to 10 additional arguments.

Argl: Code 1 = Create schedule

Arg2: Schedule name

Arg3: [Optional] Name of parent schedule

Argl: Code 2 = Delete schedule

Arg2: Schedule name

Argl: Code 3 = Clear schedule — remove all schedule entries
Arg2: Schedule name

Argl: Code 4 = Create schedule entry

Arg2: Schedule name

Arg3: Entry name (can be “” for an unnamed entry)

Argd: Target name (device, program, or group being scheduled)
Arg5: On code (0=nop, 1=atTime, 2=sunrise, 3=sunset)

The Home Control Assistant

21

Chapter 13—Expressions

22

Argb6: On data (if Arg5 is 1 then data is a time, if Arg5 is 2 or 3 then data is a signed # of
minutes)

Arg7: Off code (O=nop, 1=atTime, 2=sunrise, 3=sunset)
Arg8: Off data (if Arg7 is 1 then data is a time, if Arg7 is 2 or 3 then data is a signed # of
minutes)

Arg9: Code for action (0=nop, 1=set-percent, 2=decrease-percent, 3 = increase-percent)
Argl0: Percent data for arg9
Argl1: Vary amount in minutes. If O, then entry created without vary clause.

An ON entry is created if arg5 and arg6 are supplied and arg7 and arg8 are omitted or
arg7is 0.

An OFF entry is created if arg5 is 0, and arg7 and arg8 are supplied.

An ON-OFF entry is created if args5, arg6, arg7, and arg8 are supplied, and arg5 and 7
are not 0.

Argl: Code 5 = Delete schedule entry
Arg2: entry name

Argl: Code 6 = Modify schedule entry time

Arg2: Entry name

Arg3: On code (0=nop, 1=atTime, 2=sunrise, 3=sunset)

Arg4: On data (if Arg3 is 1 then data is a time, if Arg3 is 2 or 3 then data is a signed # of
minutes)

Arg5: Off code (O=nop, 1=atTime, 2=sunrise, 3=sunset)
Arg6: Off data (if Arg5 is 1 then data is a time, if Arg5 is 2 or 3 then data is a signed # of
minutes)

Argl: Code 7 = Modify schedule entry date
Arg2 = Entry name

Arg3 = Code for date setting

Arg4 = Data for date setting

Arg3 codes: 0 = everyday, 1 = M-F, 2 = Sat-Sun, 3 = days of week, 4 = day of month

Arg4 for when arg3=3

String of 7 characters when the first character represents Sunday and the last character
represents Saturday. A dash means not this day, a non-dash character means this day.
Suppose you wanted to set it for Wednesday and Friday, you would use “---X-X-“

Argd for when arg3=4 is the number of the day of the month

When modifying an existing schedule entry, the ON or OFF clause is modified if data is
supplied or that part of the schedule entry is not modified if the code arguments for ON
or OFF are O (for no operation)

Returns YES if the action was possible, No otherwise. For example, a deletion of a
schedule isn’t allowed if it is in use in a change schedule VP element.

Example _ModifySchedule(4, “My Schedule”, “”, “Kitchen-Lights”, 1, _Time(22,30,0)) — Yes
Name CurrentScene

Result type String

Parameters (“device name”)

Action Returns the current scene, if known, for the device.

Example _CurrentScene(“kitchen — lights”) — “Nighttime”

The Home Control Assistant

Chapter 13—Expressions

Name CurrentSchedule

Result type String

Parameters none

Action Returns the name of the current schedule.
Example _CurrentSchedule() - “Away”

The Home Control Assistant
23

Chapter 13—Expressions

Name DayNight

Result type Bool

Parameters (“Device name”, code#, data)

Action Reprograms device, if possible, to change configuration
Code 1: Change switch on-level. Data is percent 0-100
Code 2: Change LED level. Data is “High”, “Medium”, “Low”, “Faint”, or “None”
Code 3: Change backlighting. Data is “Off” or “On”
Note: Not all devices can be reprogrammed.

Example _DayNight(“Kitchen — Lights”, 1, 20) — Yes

Name DimDownPercent

Result type Number

Parameters (“device name”, percent)

Acti Decreases the named object percentage by the supplied amount. Returns 0 if able to

ction send the command, -1 if not. Note that a return code of 0 only means the command

was sent and not that the device received and acted upon it.

Example _DimDownPercent(“Kitchen — Lights”, 20) - 0

Name DimPercent

Result type Number

Parameters (“device name”, [request status?])

Action Returns the dim percentage of the named object.
If the 2" parameter is NO or omitted, the evaluation is based upon internal HCA state. If
the 2" parameter is YES and if the device is 2-way, its state is requested to determine
the percent returned.

Example _DimPercent(“Kitchen — Lights”) — 80

Name DimToPercent

Result type Number

Parameters (“device name”, percent)

Acti Controls the named object the supplied percentage. Returns O if able to send the

ction command, -1 if not. Note that a return code of 0 only means the command was sent

and not that the device received and acted upon it.

Example _DimToPercent(“Kitchen — Lights”, 50) — 0

24

The Home Control Assistant

Chapter 13—Expressions

Name

DimUpPercent

Result type

Number

Parameters

(“device name”, percent)

Action

Increases the named object percentage by the supplied amount. Returns 0 if able to
send the command, -1 if not. Note that a return code of 0 only means the command
was sent and not that the device received and acted upon it.

Example

_DimUpPercent(“Kitchen — lights”, 10) — 0

Name

Hue

Result type

Bool — Yes if the operation worked, No if not

Parameters

See below

Action

Function version of the Hue element. The first argument to the function is a code that
determines the operation.

Argl: Code 0=0n
Arg2: Device or Hue group name

Argl: Code 1 = Off
Arg2: Device or Hue group name

Argl: Code 2 = Set to percent
Arg2: Device or Hue group name
Arg3: Percent

Argl: Code 3 = Set to color

Arg2: Device or Hue group name

Arg3: Color name or if providing the color by HSB: H
Argd: S

Arg5: B

Argl: Code 4 = Set group to scene

Arg2: Hue group name

Arg3: Hue scene name

Argd: Percent, if omitted defaults to 100%

Example

_Hue(2, “Kitchen — lights”, 50) — Yes

Name

HueColorCreate

Result type

void

Parameters

(“color name”, hue, sat, brt, [update if already exists])

Action

Adds or updates a color in the colors available for the Hue function and the Hue
programmer element. If the final optional argument is present and if YES then the color
is updated. Otherwise, if it exists it is not updated.

This is useful for library programs to make colors available.

Example

_HueColorCreate("Pink", 56018, 98, 216)

The Home Control Assistant

25

Chapter 13—Expressions

26

Name IconChange

Result type Void

Parameters “name”, [“icon name”], [“display name”])

Action Change the displayed icon for a device, program, group, or display.
The 2nd parameter is the name of the icon to change to. If omitted, the original icon
selected for the object is restored.
The 3rd parameter is the name of the effected display. If omitted, then all displays with
an icon for this object are changed.

Example _lconChange(“Kitchen — lights”, “Appliance”)

Name IconChangeEx

Result type Void

Parameters (“name”, code, [arg3], [arg4], [arg5])

Action Change the displayed icon for a device, program, group, or display. The 15t argument is
the object whose icon is modified. The 2" argument is a code.
code=0 - Returns the icon to HCA control and resets the icon, icon representation, label,
and annotation text
code=1 - Changes the icon
arg3: Icon name
arg4: <Optional>Icon representation (0=0n, 1=0ff, 2=Dim)
If the option 4t argument is present that sets the representation of the icon as
specified. The state of the object doesn’t change the icon representation.
If the optional 4th argument is omitted, then while the icon image is changed, the state
of the object controls the representation of the icon.
code=2 - Changes the label text below the icon
arg3: Label text
code=3 - Change the text to the right of the icon if a theme with that feature is in use
arg3: Text
code=4 - Displays text over the icon (“annotation”)
arg3: Text (limited to 48 characters)
argd: <optional>Text size in points. If omitted uses 18
arg5: <optional>RGB of the text color. If omitted uses black (Hint: Use _RGB function)
To make multiple lines, embed a newline character in the text where it breaks like this:
“abc” + _chr(10) + “def”

Example _lconChangeEx(“Kitchen — Lights”, 2, “Ceiling Lights”)

Name IconExists

Result type Bool

Parameters (“icon name”, [“theme name”])

Acti Returns YES if the named icon exists in the named theme. If the theme argument is

ction omitted, then the default theme is used.
Example _lconExists (“Appliance”) — YES

The Home Control Assistant

Chapter 13—Expressions

Name IsCurrentSchedule

Result type Bool

Parameters (“schedule name”)

Action Returns YES if the named schedule is the current schedule.
Example _IsCurrentSchedule(“Away”) — Yes

Name IsDim

Result type Bool / Number

Parameters (“Device name”, [request status?])

Action Returns YES if the named object is at 1% to 99%

If the 2nd parameter is NO or omitted, the evaluation is based upon internal HCA state.
If the 2nd parameter is YES, and the object supports status, its state is requested to
determine the return value. If the device doesn’t respond to the status poll, a -1 is

returned.

Example _IsDim(“Kitchen — lights”) — Yes

Name IsDisabled

Result type Bool

Parameters (“name”)

Action Returns Yes if the object is disabled.

Example _IsDisabled(“Kitchen — Lights”) — No

Name IsinErrorState

Result type Bool

Parameters (“name”)

Action Re'turns yes if the object is in an error state due to a previous communication failure
with the device.

Example _IsInErrorState(“Kitchen — Lights”) — No

The Home Control Assistant
27

Chapter 13—Expressions

Name IsOff

Result type Bool / Number

Parameters (“Device name”, [request status?])

Action Returns YES if the named object is OFF, NO otherwise.
If the 2nd parameter is NO or omitted, the evaluation is based upon internal HCA state.
If the 2nd parameter is YES and the object supports status, its state is requested to
determine the return value. If the device doesn’t respond to the status poll, a -1 is
returned.

Example _IsOff(“Kitchen - Lights”) — No

Name IsOn

Result type Bool / Number

Parameters (“Device name”, [request status?])

Action Returns YES if the named object is ON, NO otherwise.
If the 2nd parameter is NO or omitted, the evaluation is based upon internal HCA state.
If the 2nd parameter is YES and the object supports status, its state is requested to
determine the return value. If the device doesn’t respond to the status poll, a -1 is
returned.

Example _IsOn(“Kitchen - Lights”) — Yes

Name IsRunning

Result type Bool

Parameters (“Program name”, [optional bool])
Returns YES if the program is currently running.

Action prog y &
If a second argument is supplied and has the value "yes", then the function returns true
if the program is currently running *or* is waiting to start again because it uses the "run
again" option. Without the second argument or if that argument is "no", only if the
named program is currently running does the function return YES.

Example _IsRunning(“Home — Driveway Alert”) — Yes

Name IsSuspended

Result type Bool

Parameters (“name”)

Action Returns YES if the named object is suspended

Example _IsSuspended(“Kitchen — lights”) — No

28

The Home Control Assistant

Chapter 13—Expressions

Name Off

Result type Number

Parameters “name”, [button#])

Acti Controls the named object to OFF. If the optional 2nd argument is supplied, it

ction designates a keypad button indicator. Returns 0 if able to send the command, -1 if not.

Note that a return code of 0 only means the command was sent and not that the device
received and acted upon it.

Example _Off (“Kitchen — lights”) > 0

Name On

Result type Number

Parameters (“name”, [button#])

Acti Controls the named object to ON. If the optional 2nd argument is supplied, it designates

ction a keypad button indicator. Returns O if able to send the command, -1 if not. Note that a

return code of 0 only means the command was sent and not that the device received
and acted upon it.

Example _On (“Kitchen — lights”) —> 0

Name SetCurrentState

Result type Void

Parameters (“name”, percent#)

Action Change the internal maintained state of the named object to the percent supplied. The
device is not actually communicated with. Also updates the icons for the device.
0% = OFF, 100% = ON, 1%-99% = Dim.

Example _SetCurrentState(“Kitchen — lights”, 80)

Name SetHomeMode

Result type Bool

Parameters (codett)

Action Set new home mode using code values:
0 = Home & Awake, 1 = Home & Asleep, 2 = Away, 3 = 4th mode
Returns YES if successful, NO if not.

Example _SetHomeMode(1) — Yes

The Home Control Assistant

29

Chapter 13—Expressions

Name SetSchedule

Result type Void

Parameters (“name”

Action Makes the named schedule the current schedule.

Example _SetSchedule(“My vacation Schedule”)

Name SetRunAgainTime

Result type Void

Parameters (date-time, [“program name”])

Action Requests a program to start at the specified time. Does, in effect, the same action as the
Auto-Start configuration on the program's Advanced Options tab but using a computed
time rather than a fixed time as specified there.

If the time is given as 0, any previous request for start is canceled.
If the 2nd argument is provided, the named program is the target otherwise it applies to
the running program.

Example _SetRunAgainTime(_now() + _hours(1))

Name SetToScene

Result type String

Parameters (“name”, “scene name”)

Acti Controls a device to a named scene. Returns the current scene before the named scene

ction is set.

Example _SetToScene(“Kitchen — lights”, “nighttime”) — “”

Name StartProgram

Result type void

Parameters (“program name”, [argl], [arg2], ... [arg8])

) If the program doesn't "return a value" — option on program "Advanced Options" tab —

Action Lo L .
then starts a program running independently from the program containing this
function. Does not hold until that program is complete. If additional arguments are
provided, they are passed to the started program.

If the program being started returns a result — option enabled on the program
"Advanced Options" tab - then the program that contains the Start-Program waits until
the started program completes and the result of the StartProgram function is the value
generated by the started program.

Example _StartProgram(“Outside — HandleLights”, 100, 10)

30

The Home Control Assistant

Chapter 13—Expressions

Thermostat functions

Name GetThermostat

Result type Bool / Number

Parameters (“thermostat device name”, code#)

Action Retrieves the thermostat setting given by the code from the table below. Returns a
number if the operation worked and a bool of No if it didn’t.
It is up to the program that uses this function to request only settings supported by the
thermostat and for the setpoints only when in the correct mode.
The return value is the setting retrieved or an error. Use the _IsBool on the result to
determine if you have received the requested data or an error.

Example _GetThermostat(“Home — Thermostat”, 1) — 68

Name SetThermostat

Result type Bool / Number

Parameters (“thermostat device name”, code#, value#, [code#], [valuet], ...)

Action Changes the thermostat setting given by the code to the value. Codes are given in the
table below.
Can change from 1 to 5 settings at once with optional code value pairs.
Returns a Yes if the operation worked and No if it didn’t. Use the _IsBool on the result
to determine if the operation worked or an error.
It is up to program that uses this function to change only settings supported by the
thermostat and to change the setpoints only when in the correct mode.

Example _SetThermostat(“Home — Thermostat”, 2, 68) — Yes

Code Setting Returned value

0 Temperature Integer value

1 Heat Setpoint Integer value

2 Mode Off =0. Heat =1, Cool =2, Auto =3

3 Fan 0=0n, 1=0ff

4 Economy 0=0n, 1=0ff

5 Aux Heat 0=0n, 1=0ff

6 Humidity Integer value

7 Cool Setpoint Integer value

8 Has Leaf (NEST only) 0=0n, 1=0ff

13 Nest Mode (NEST only) 0 =Away, 1 =Home

When changing the NEST mode, it changes all thermostats in the
structure associated with the thermostat being controlled.

The Home Control Assistant

31

Chapter 13—Expressions

Weather functions

Name WeatherGet

Result type Number

Parameters (“data item name”, [code#], [#hours])

Action This function retrieves the named weather item in the units the provider is configured
for.

The item name, provided as a string, is the name of the weather item to retrieve. The
item names are the same as used in the weather-test element: “Temperature”,
“Apparent Temperature”, “Dew Point”, etc.

The code is optional and is specified as: O=current, 1=max, 2=min, 3=average.

The #hours argument is optional and is specified as a positive number for forecast data
and as a negative number for historical data.

If the data isn’t available the value -999 is returned.

Example _WeatherGet(“Wind speed”, 1, -3) — 10.9
Gets the max wind speed in the last 3 hours
_WeatherGet(“Wind speed”, 1, +3) —> 3.2
Gets the max wind speed expected in the next 3 hours

Name DarkSky

Result type String

Parameters (“path1”, [“path2”], [“path3”], ...)

Action Retrieves data from the dark sky weather provider using the supplied path. There can
be from 1 to 10 arguments which are the path through the JSON. The path elements are
not case sensitive.
A program error happens if the weather provider is not dark sky. If the requested data
isn't available -999 is returned. When retrieving a key whose value is time, a conversion
is automatically done between dark sky time (UNIX time) and Windows time.
If the first argument to the _DarkSky function is a number, that number is assumed to
be a zip code and that location is used to fetch weather data. The remainder of the
arguments are then taken to be the path to the data item wanted. For example, this
displays the current temperature at the installation location:
void =_PgmNote("Temperature at home is " + _DarkSky("currently", "temperature"));
This displays the current temperature in Palm Springs California:
void =_PgmNote("Temp in PSis " + _DarkSky(92240, "currently", "temperature"));
See the Dark Sky technical note for more information.

Example _DarkSky(“currently”, “pressure”) — “1010.34”

32

The Home Control Assistant

Chapter 13—Expressions

Name BarometerConvert

Result type Number

Parameters (number, from units code#, to units code#)

Action Converts betv_vgen barometer_units. The unit codes are:
Inches = 0, Millimeters = 1, Millbars = 2, HectoPascals = 3

Example _BarometerConvert (32, 0, 2) — 1015

Name BarometerUnits

Result type String

Parameters None

Action Returns a string of the barometer units

Example _BarometerUnits() - “mb”

Name HumidityUnits

Result type String

Parameters None

Action Returns a string of the humidity units

Example _HumidityUnits() > “%”

Name RainConvert

Result type Number

Parameters (Number, from units code#, to units code#)

Action Converts bet\{vgen rain units. The codes are:
Inches = 0, Millimeters = 1

Example _RainConvert (1,0, 1) > 25.4

Name RainUnits

Result type String

Parameters None

Action Returns a string of the rain intensity units

Example _RainUnits() — “in/hr”

The Home Control Assistant

33

Chapter 13—Expressions

34

Name TempConvert

Result type Number

Parameters (number, from units code#, to units code#)

Action Converts between temperature units. The codes are:
F=0,C=1

Example _TempConvert(32,0,1) >0

Name TempUnits

Result type String

Parameters None

Action Returns a string of the temperature units

Example _TempUnits() —> “F”

Name UVUnits

Result type String

Parameters None

Action Returns a string of the UV units

Example _UVUnits() > “UV Index”

Name WindDirUnits

Result type String

Parameters None

Action Returns a string of the wind direction units

Example _WindDirUnits() —» “degrees”

Name WindDirection

Result type String

Parameters (number)

Action Changes a wind direction in degrees into a string of the form: N, NNE, NE, ENE, etc.

Example _WindDirection (90) — “E”

Name WindSpeedConvert

Result type Number

Parameters (number, from units code#, to units code#)

Action Co_nverts between wind speed l.mits. The codes are:
Miles per hour = 0, Knots = 1, Kilometers per hour = 2, Meters per second = 3

Example _WindSpeedConvert (10, 0, 2) — 16.09

The Home Control Assistant

Chapter 13—Expressions

Name WindSpeedUnits

Result type String

Parameters None

Action Returns a string of the wind speed units
Example _WindSpeedUnits() —» “m/s”

The Home Control Assistant
35

Chapter 13—Expressions

File operation functions

36

This category of functions comprises a set of functions that operate on disk-based files. HCA
allows a maximum of 16 files to be open at one time.

Name FileOpen
Result type Number
Parameters (“path”, open option)
Action Opens a file so that the ReadString and WriteString functions can be used.
Option 0 = Open for Reading
Option 1 = Open for Writing
Option 2 = Open for writing and writes append to the end
If the file can’t be opened the result is -1 otherwise a number from 0 to 15 inclusive.
Example hFile = _FileOpen(“myFile.txt”, 1)
Name FileClose
Result type Void
Parameters (file handle#)
Action C.Ioses a file previously opened with FileOpen. The argument is the value returned from
FileOpen.
Example Void = _FileClose(hFile)
Name FileExists
Result type Bool
Parameters (“path to the file”)
Action Determines if a file exists and returns Yes if it does and No if it doesn't.
Example _FileExists(“myFile.txt) - No
Name FileLoad
Result type String / Bool
Parameters (“path to the file”, code#)
Action Opens the file at the supplied path, reads the contents and returns the file contents as
one string. The options are:
0 = copy CR-LF characters in the file into the result string, 1 = replace CR-LF characters in
the file with a single blank in the result string
Returns YES if worked, NO otherwise. Test with _IsText or _IsBool to check.
There is no limit on the size of the file, but a really big file will probably break HCA.
Example _FileLoad(“my file.txt”, 0) — “The file contents”

The Home Control Assistant

Chapter 13—Expressions

Name FileReadString

Result type String / Bool

Parameters (file handle #)

Action Reads from a file opened by _FileOpen.
The handle parameter is the number returned from _FileOpen
If there is data remaining in the file, the result is the string read from the file.
If there is no data remaining in the file, then the result is a bool value of No.
The result can be tested with the IsText or IsBool functions.

Example _FileReadString (hFile) > “A line from the file”

Name FileWriteString

Result type Number

Parameters (file handle #, “data to write”)

Action Writes to a file opened by _FileOpen. The handle parameter is the number returned
from _FileOpen. The number of characters written to the file is returned. If the string
ends with an ASCII newline character, then the line written to the file ends with both a
CR and NL characters. Create a newline with a _chr(10) function.

Example _FileWriteString (hFile, “Hello web” + _chr(10))

Name FileDelete

Result type Bool

Parameters (path)

Action Deletes a file. If the delete is successful — the file existed and is now removed — Yes is
returned, No otherwise.

Example _FileDelete (“myfile.txt”)

Name HCAFolder

Result type String

Parameters None

Action Returns the path to the HCA sub-folder in your documents area.

Example _HCAFolder() — “c:\users\kimberly\documents\HCA”

The Home Control Assistant

37

Chapter 13—Expressions

JSON functions

JSON is a method of encoding data. HCA has several functions that work with JSON. Refer to
the JSON technical note for more information and examples.

Name Json

Result type String / Bool

Parameters (handle, “keyl”, [“key2”], [“key3”]...)

Action Retrieves a value from the parsed JSON starting at the current position. There can be

from 2 to 10 arguments.
argl is the handle returned by _JsonOpen

arg2 - argl0 are the key names to find at each level.

Returns the extracted data if found, NO otherwise. Use _IsBool to check the result.

Example _Json(handle, “1”, “action”, “xy”, “0”) — “0.4573"

Name JsonOpen

Result type Number / Bool

Parameters (“text”)

Acti Parses the JSON text into an internal form and returns a handle to it. If the parse fails,

ction then the result is NO. Use _IsBool to check for failure. A valid return is a number 1 to 16

inclusive.

Example Text = “{ “"Color”" : ""blue”" , “"State”" : true}”;
hJson = _JsonOpen(text);

Name JsonClose

Result type Void

Parameters (# returned from json open)

Action Releases the parsed form of the JSON. The handle is what was returned by _JsonOpen.

Example _JsonClose(hJson)

Name JsonDown

Result type Bool

Parameters (# returned from json open)

Action Moves the current position to the first child of the current key in the parsed JSON. The
handle is what was returned by _JsonOpen.
Returns YES if there if the move was successful, NO otherwise.

Example _JsonDown(hJson) — Yes

38 The Home Control Assistant

Chapter 13—Expressions

Name JsonNext

Result type Bool

Parameters (# returned from json open)

Action Moves the current position to the next key in the parsed JSON. The handle argument is
what was returned by _JsonOpen.
Returns YES if there if the move was successful, NO otherwise.

Example _JsonNext(hJson) — Yes

Name JsonPrev

Result type Bool

Parameters (# returned from json open)

Action Moves the current position to the previous key in the parsed JSON. The handle
argument is what was returned by _JsonOpen.
Returns YES if there if the move was successful, NO otherwise.

Example _JsonPrev(hJson) — Yes

Name JsonUp

Result type Bool

Parameters (# returned from json open)

Action Moves the current position to the parent of the current key in the parsed JSON. The
handle argument is what was returned by _JsonOpen.
Returns YES if there if the move was successful, NO otherwise.

Example _JsonUp(hJson) — Yes

Name JsonCurrentKey

Result type text

Parameters (# returned from json open)

Action Returns the key from the current position in the JSON as moved by JsonUp, JsonDown,
JsonNext, JsonPrev

Example _JsonCurrentKey(hJson) — "Color"

Name JsonCurrentValue

Result type text

Parameters (# returned from json open)

Action Returns the value from the current position in the JSON as moved by JsonUp,
JsonDown, JsonNext, JsonPrev

Example _JsonCurrentValue(hJson) — "Blue"

The Home Control Assistant

39

Chapter 13—Expressions

Lookup functions

40

This category of functions is useful for working with the elements of your design.

Name AddressForDevice

Result type String

Parameters (“device name”)

Action Returns the “address” of the device. Formatted as per the protocol of the device.

Example _AddressForDevice(“Den — Plug”) — “192.168.0.182"

Name CurrentWattage

Result type Number

Parameters ([“device or room name”])

X Returns the current wattage used by the device or room. With no argument supplied it

Action
returns the whole home current wattage.

Example _CurrentWattage (“Kitchen — Lights”) — 400

Name DesignOpen

Result type Number

Parameters (code#, [“room-folder name”], [“tag name”], [“tag value”)

Action Works with _DesignName and _DesignClose to allow you to operate on each element in
your design. Which elements depends upon the code used.
Code=1 devices, code=2 programs, code=3 groups, code=4 rooms & folders, code=5
variables, code=6 only rooms, code=7 only folders, code=8 only displays.
If the optional 2nd argument is used for codes 1-3, then it limits what _DesignName
returns to the contents of the folder or room given by the 2" argument.
The optional 3" argument limits what _DesignName returns to those objects that have
that tag. If you are using the 3 or 4th argument and don’t want to limit it to a specific
room, use “” for the 2" argument.
If the optional 4t argument is used, it is further limited to those objects that have the
tag with the given value.
A valid return is a number from 0 to 15 inclusive.

Example hDesign = _DesignOpen(1, “Kitchen”)

The Home Control Assistant

Chapter 13—Expressions

Name DesignClose

Result type Void

Parameters (# returned from DesignOpen)

. Close the design opened with _DesignOpen. The one argument must be the value

Action .
returned from _DesignOpen.

Example Void =_ DesignClose (hDesign)

Name DesignName

Result type String

Parameters (# returned from DesignOpen)

. Returns the name of the current design element and moves to the next element. This

Action . [. .
allows you to use _DesignName until it returns an empty string. This generates the
names of all your design elements based upon the arguments to _DesignOpen.

Example Name = _DesignName (hDesign)

Name DesignTitle

Result type String

Parameters None

Action Returns the title set in the Home Properties dialog.

Example _DesignTitle() —» “Kimberly’s Villa”

Name DeviceForAddress

Result type String

Parameters (“Protocol name”, “address”)

Acti Locates a device and returns the name of that device by looking for a device of the

ction supplied protocol with the address. The address is formatted differently for each

protocol. The protocols are: “X10”, “Insteon”, “UPB”, “Hue”, “Wireless”, or the name of
a user class. Returns the empty string if no such device.

Example _DeviceForAddress(“Insteon”, “02.62.4b”) — “Den — Light”.

Name GetDeviceKind

Result type Number

Parameters (“device name”)

Action Returns a value that is the kind of device. possibilities are:
0: Other, 1: Switch, 2: Module, 3: Light, 4: Input, 5: Lock, 6: Camera, 7: Keypad with
load, 8: Keypad, 9: IR Output, 10: Fan, 11: Thermostat

Example _GetDeviceKind (“Kitchen-Lights”) —> 1

The Home Control Assistant

41

Chapter 13—Expressions

Name GetDeviceMake

Result type String

Parameters (“device name”)

Action Returns the name of the device manufacturer if known

Example _GetDeviceMake (“Kitchen — lights”) — “PulseWorx”

Name GetDeviceModel

Result type String

Parameters (“device name”)

Action Returns the name of the device model if known

Example _GetDeviceModel (“Kitchen — lights”) — “WS1D Wall switch”

Name GetDeviceProtocol

Result type String

Parameters (“device name”)

Action ‘Iliet'urns tf‘1le protocol of the device. The protocols are: "X10", "Insteon", "UPB", "Hue",

Wireless" or the name of a user class.

Example _GetDeviceProtocol (“Kitchen — lights”) — “UPB”

Name GetObjectProperty

Result type String

Parameters (“object name”, “property name”)

Action Returns the named property for an object. Currently implemented properties are:
“Fixedld”. Result is a number that can be saved outside of HCA to reference the object.
It will not change with time or HCA restart.
“SupportsSetPercent” or “IsDimmable”. Returns a bool result of YES if the named
device, program, or group is capable of setting to a percent in addition to ON and OFF
“SupportsOn”. Returns a bool result of YES is the named device, program, or group is
capable of an ON operation.
“SupportsOff”. Returns a bool result of YES is the named device, program, or group is
capable of an OFF operation.
“Wattage”. Returns the current wattage of the device.
“ProgramAsDevice”. Returns a bool result of YES is the named program has the option
enabled for HCA to treat this program as if it were a device,
“FriendlyName”. Returns a string result of the voice “friendly” name of the object.

Example _GetObjectProperty (“Kitchen — lights”, “Friendly Name”) — “Kitchen counter”

42

The Home Control Assistant

Chapter 13—Expressions

Name GroupMemberCount

Result type Number

Parameters (“group name”)

Action Returns the number of members in the group.

Example _GroupMemberCount (“Outside — lights”) — 5

Name GroupMemberName

Result type String

Parameters (“group name”, member#)

Action Returns the name of the ith member of the group.

Example _GrouptMemberName (“Outside — lights”, 2) — “Left light”

Name HomeMode

Result type Number

Parameters None

Action Returns the current home mode.
0 = Home & Awake, 1 = Home & Asleep, 2 = Away, 3 = 4th mode.

Example _HomeMode() > 0

Name IsValidObject

Result type Bool

Parameters (“name”, codet)

Action Returns YES if the design contains an object with the name of the specified type. Codes
are:
0:Device, 1:Program, 2:Group, 3:Room/Folder/Display, 4:Schedule, 5:Global Variable,
6:room, 7:folder, 8:display.

Example _IsValidObject(“Kitchen — lights”, 0) — yes

Name LastControlTime

Result type Date-Time

Parameters (“device, program, or room name”)

Action Returns the time of the last control of the device or, for a program, when last started.
Returns a Boolean NO, if no control time is available. Use _IsBool to check the result.
If a room name is supplied, it returns the latest control of any device in the room.

Example _LastControlTime (“Kitchen — Lights”) — 28-Sep-2018 07:03

The Home Control Assistant

43

Chapter 13—Expressions

Name LastReceptionTime

Result type Date-time

Parameters (“device or room name”)

Action Returns the time of the last reception from the device. Returns a Boolean NO, if no
reception time is available. Use _IsBool to check the result. If a room name is supplied,
it returns the latest reception from any device in the room.

Example _LastReceptionTime (“Kitchen — Lights”) — 28-Sep-2018 07:04

Name ObjectTagClear

Result type Bool

Parameters (“object name”)

Action Removes all tags from a device, program, group, room, folder, or display.

Example _ObjectTagClear (“Kitchen — Lights”)

Name ObjectTagDelete

Result type Bool

Parameters (“object name”, “tag name”)

Action Removes from a device, program, group, room, folder, or display the supplied tag.

If the tag doesn't exist for that object, NO is returned, YES otherwise.

Example _ObjectTagDelete (“Kitchen — Lights”, “color”) — yes

Name ObjectTagExists

Result type Bool

Parameters (“object name”, “tag name”, [“tag value”])

Action Checks if a device, program, group, room, folder, or display has the supplied tag and
optionally checks that the tag value matches the supplied value.

If the tag isn't assigned to the object, NO is returned.

If the tag is assigned to the object and the value argument is omitted, YES is returned.
If the value argument is supplied, YES if returned if the tag value matches the supplied
value.

Example _ObjectTagExists (“Kitchen — Lights”, “color”, “blue”) — yes

44

The Home Control Assistant

Chapter 13—Expressions

Name ObjectTagGet

Result type String / Bool

Parameters (“object name”, “tag name”,[“default value”])

Action Returns the value of the tag assigned to the device, program, group, room, folder, or
display with the supplied name. If the tag is not found in the named object, a boolean
NO is returned *unless* the 3rd optional argument is supplied and then the value
returned is the value of the 3rd argument.

Example _ObjectTagGet(“Kitchen — lights”, “color”) — “blue”

Name ObjectTagSet

Result type Bool

Parameters (“object name”, “tag name”, “tag value”)

Action Assigns to the supplied device, program, group, room, folder, or display a tag with the
supplied value. If the tag doesn't exist for that object one is added to it.
If there is no room for a new tag for that object - it already has the maximum number -
a bool NO is returned.

Example _ObjectTagSet(“Kitchen — lights”, “color”, “blue”) — yes

Name SetCurrentWattage

Result type Void

Parameters (“device name”, wattage#)

Action Change the current wattage used by the device when at 100% to the value supplied.

Example _SetCurrentWattage(“Kitchen — lights”, 400)

Name SetObjectProperty

Result type Bool

Parameters (“object name”, “property name”, value)

) Sets information about the named object. These properties can be set, and the type of

Action
data expected.
“LastReceptionTime” -> date-time
“LastControlTime” -> date-time
“ControlCount” -> number
“LastExecutionTime” -> date-time
“ExecutionCount” -> number
“AlertOptOut” -> Boolean
Returns YES if the update is made, NO otherwise

Example _SetObjectProperty (“Kitchen — lights”, “LastReceptionTime”, _Now())

The Home Control Assistant

45

Chapter 13—Expressions

46

Name

Statistics

Result type

Number

Parameters

(codet, [“name”

Action

Returns statistics since HCA was started based upon the supplied code.

[Code = 1] Total number devices controlled, unless a device name is given and then the
count is for only that device

[Code = 2] Total number of programs executed, unless a program name is given and
then the count is for only that program

[Code = 3] Total number of client connections

[Code = 4] Total number of messages from all interfaces unless the interface number is
given then the count is for only that interface. Interfaces are numbered 1 to 8. Note
that numbering is different than _InterfaceName and _InterfaceStatus.

[Code = 5] Current number of open JSON handles
[Code = 6] Current number of open design handles
[Code = 7] Current number of open file handles

For codes 1-4, If the code has a negative value, it clears the statistics, either the total or
for a specific object. Examples:

_Statistics
_Statistics
_Statistics
_Statistics
_Statistics
_Statistics

1) — the total count for all devices

1, "Kitchen") — the total for all devices in the kitchen

1, "Kitchen - Lights") — the count for only that single device
-1) — clear counter for every device

-1, "Kitchen") — clear counter for every device in the kitchen
-1, "Kitchen - Lights") — clear counter for kitchen-Lights

— o~~~ —~ —

Example

_Statistics(2) —» 26

Name

Status

Result type

String

Parameters

(“object name”)

Action

Returns a readable string which shows the status of the device, program, or group.
What is returned depends upon the type of the object, and if a device, the type of the
device.

Example

_Status(“Kitchen — lights”) — “75%”

The Home Control Assistant

Chapter 13—Expressions

Miscellaneous functions

Functions comprises a set of generally useful things that are not in any other category.

Name AlertAdd
Result type Void
Parameters (alert#, “argl”, "arg2")
Action Raises an alert. How alerts are configured determines the effect of this.
Any of the alerts in HCA can be added. The following table shows the codes and the
expected text of the arguments.
Use Code Argl Arg2
User1-8 1to8 Any text wanted Not used
No reception group 1-4 9to 12 Device name Any text wanted
Confirm receipt ACK fail 13 Device name Any text wanted
Confirm receipt by status 14 Device name Any text wanted
fail
Confirm receipt by status 15 Device name Any text wanted
all failed
Status request not 16 Device name Any text wanted
answered
UPB reception missing 17 Device name Any text wanted
sequence packet
Unknown reception 18 Any text wanted Not used
Program error 19 Program name Any text wanted
Interface error 20 Interface name +": " + Not used
error text
Interface disconnect 21 Interface name Not used
Power out 22 String showing time Not used
Power restored 23 String showing time Not used
Weather observation 24 Weather provider name Not used
failed
Client disconnect 25 Any text wanted Not used
Cloud DDNS update failed | 26 Any text wanted Not used
Cloud disconnect 27 Any text wanted Not used
Example _AlertAdd(1, “Check pump”)

The Home Control Assistant

47

Chapter 13—Expressions

Name

AlertCount

Result type

Number

Parameters

(alert#, [device or room name]

Action

Returns the number of alerts for the supplied code. For alerts related to a device, if the
optional second argument is supplied as a device name, then the count of alerts of the
type for that device are returned. If a room name is supplied, then a total count of alerts
for all devices in the room with that type of alert.

Codes are:

:Useralert 1

: User alert 2

: User alert 3

:User alert 4

: User alert 5

1 User alert 6

: User alert 7

: User alert 8

: No reception group 1

: No reception group 2

: No reception group 3

: No reception group 4

: No ACK from device (Confirm receipt failed)
: Confirm receipt of command failed

: All attempts at confirm receipt of command failed
: Status poll fails

: UPB missing sequence packet

: Unknown reception

: Program error

: Interface error

: Interface disconnect

: Power out (interface disconnected)

: Power restored (interface reconnected)
: Weather observation failed

: Client disconnected abnormally

: Cloud update failed

: Cloud connected server disconnected

O 00N UL WN B

NNNNNNNNRRRRRRRRR B
Nouph wWNREREOOVONOOULLEE, WN RO

Example

_AlertCount(7) > 1

Name

AlertClear

Result type

Void

Parameters

(alert#, [device or room name])

Action

Clears the alert given by the #. The Alert number is the same as supplied to _AlertCount.
If the optional second argument is supplied as a device name, then that alert for only
that device is cleared. If a room name is supplied, then that alert type for all devices in
the room are cleared. The value O for the alert# will clear all alerts.

Example

_AlertClear(1)

48

The Home Control Assistant

Chapter 13—Expressions

Name AlertLevel

Result type Number

Parameters (alert#)

Acti Returns the level of the alert. This is the color for that alert as seen in the Alert

ction Manager. Green=0, Yellow=1, Red=2

Example _AlertLevel(11) > 1

Name AlertName

Result type String

Parameters (alert#)

Action Returns the text that HCA shows in the Alert Summary display. Don't forget that the
User alerts 1-8 and the Overdue alerts 1-4 can be renamed by the user. _AlertName
return those names

Example _AlertName(16) — "Status request and no reply"

Name Assign

Result type Void

Parameters (“variable name”, any)

Action Assigns to the named variable — given by a string - the value given by the second

ctio argument. If the variable doesn't exist a global variable is created.

Example _Assign(“My variable”, 17)

Name Delay

Result type Number

Parameters (time-span1, [time-span2])

Acti If one argument is supplied, then delays for that amount of time. If two arguments are

ction supplied, then delays for a time somewhere between the two time spans. Returns the
number of seconds delayed.

Example _Delay(_Minutes(1), _Minutes(10)) —» 117

Name DelayShort

Result type Void

Parameters (milleconds#)

Action Delays for at least the specified number of milliseconds.

Example _DelayShort(1500)

The Home Control Assistant

49

Chapter 13—Expressions

50

Name DesignSave

Result type Void

Parameters ([code#])

Action Saves the current design file. The codes are: 0 or not supplied = Always save.
1 = Only save if modified.

Example _DesignSave ()

Name GetFolder

Result type String

Parameters (“2-part name”)

Action Returns the folder name portion of the 2-part name

Example _GetFolder(“Kitchen — Lights”) — “Kitchen”

Name GetObject

Result type String

Parameters (”2-part name”)

Action Returns the object portion of a 2-part name.

Example _GetFolder(“Kitchen — Lights”) — “Lights”

Name HCASystemAction

Result type Bool

Parameters (code, name, [arg3], [arg4], [arg5], [arg6])

Action The name argument can be supplied as:

"HCA Server" in which case codes 2, 3, and 4 apply to the HCA Server computer.

The name of a client as given on the "HCA Options" Client-Server tab

The empty string "" in which case all connected clients are sent the operation. If the
program containing the _HCASystemAction was manually started on a client but a right-
click "Start", that client is NOT effected.

The code argument:

code = 0 Causes control-only client to reload the current design. Has no effect on the
server or HCA.exe operating as a client. No optional arguments

code =1 Causes HCA client or server software to terminate
arg3: If supplied, the number of seconds to wait before shutdown

code = 2 Causes HCA client computer or HCA Server computer to restart Windows
arg3: If supplied, the number of seconds to wait before shutdown

code = 3 Causes a new Windows process to be started
arg3 = (string) Path to executable file
argd = (string) Working folder. If omitted uses Windows default
arg5 = (string) Executable program arguments added to command line

The Home Control Assistant

Chapter 13—Expressions

argb = (number) if non-zero runs the executable minimized

If you are using HCA stand-alone (that is, not client-server) then the name argument is
ignored and you can use codes 1, 2, or 3.

Example _HCASystemAction(1, “HCAServer”) — Yes

Name HCAVersionGE

Result type Bool

Parameters (majorVersion, [minorVersion], [Build#])

Action Gengrates a yes/no value based upon the version of HCA running the program and the
supplied arguments.

Example Example, assume that the current HCA version that is running the program is 16.0.28
_HCAVersionGE(16) -> Yes
_HCAVersionGE(17) -> No
_HCAVersionGE(16, 0) -> Yes
_HCAVersionGE(16, 1) -> No
_HCAVersionGE(16, 0, 28) -> Yes
_HCAVersionGE(16, 0, 29) -> No
_HCAVersionGE(16, 1, 30) -> No

Name HostNameTolP

Result type String

Parameters (host name string)

Action Uses the name server to convert a host name to the 4-part IP address. Returns a
Boolean NO if the conversion fails.

Example _HostNameTolP(“hcatech.com”) — "66.113.102.195"

Name InterfaceName

Result type String

Parameters (interface-number)

Action Returns the name of the interface with the supplied number (0-7). The numbers are in
the order that the interfaces appear on the HCA Options hardware tab.

Example _InterfaceNamel() —» “Insteon”

The Home Control Assistant

51

Chapter 13—Expressions

Name InterfaceRestart
Result type Bool
Parameters None
Acti Disconnects HCA from all automation interfaces and then reconnects. This can help
ction keep the interfaces connected over a long period of time in case Windows decides to
close connections not recently used. Returns YES if the operation worked.
Example _InterfaceRestart() - TRUE
Name InterfaceStatus
Result type Bool
Parameters (interface-number)
Action Returns the status of the interface with the suppled number (0-7). The numbers are in
ctio the order that the interfaces appear on the HCA Options hardware tab. Returns TRUE if
working and FALSE if not
Example _InterfaceStatus(1) — TRUE
Name MakeValidName
Result type string
Parameters (“string”)
Action Converts, if necessary, the supplied string into a valid HCA Name. Any characters in an
ctio HCA name that are not allowed are replaced by underscore characters.
Example _MakeValidName(“Light:1” — “Light_1"
Name PgmNote
Result type void
Parameters (“string”, [code])
. Displays the text in the program note window if open. If the program notes window is
Action
not open, has no effect.
If supplied, the code argument value of 1 clears the program note viewer.
Example _PgmNote(“Handling change in levels”)
Name PlaySound
Result type Bool
Parameters (“path to sound file”, code#)
Action Plays a Sound file using the computer’s sound system. The 1st argument is a path to the
sound file.
The code# argument is as follows:
1: The sound file starts playing and HCA moves to the next element
2: The sound file starts playing and HCA moves to the next element. When the sound
file finishes, it starts playing again.

52

The Home Control Assistant

Chapter 13—Expressions

3: The sound file starts playing and HCA waits until it is complete before moving to the
next element.

If you used option #2, later you can stop the sound file playing by using the PlaySound
function again with "" for the path.

Example _PlaySound (“c:\files\beep.wav”, 1) — yes

Name ProblemLevel

Result type Number

Parameters None

Action Returns current problem level as shown by the HCA status bar lights.

0 = Green, 1 =Yellow, 2 = Red.

Example _ProblemLevel() - 0

Name RGB

Result type Number

Parameters (red#, bluett, green#t)

Action Returns the encoded color for the red, green, blue values specified.

Example _RGB(51, 51,255) — hex value 3333FF (a nice blue)

Name Rand

Result type Number

Parameters (numberl, number2)

Action Returns a random number chosen between the two numbers supplied.

Example _Rand (100, 200) — 119

Name ReportAdd

Result type Void

Parameters (“text”)

Action Adds a message to be sent in the next Daily Report.

Example _ReportAdd (“Check battery levels this week”)

Name SetSunriseDelta

Result type Number

Parameters (sunrise delta #)

Action Ch.an.ges the sunrise dellta value that is set in the home properties on the .Loca.tion tab.
This is the number of minutes to add or subtract from the computed sunrise time to be
more accurate for your location. Returns the value it was set to before the change was
made.

Example _SetSunriseDelta (20) > 8

The Home Control Assistant

53

Chapter 13—Expressions

Name SetSunsetDelta
Result type Number
Parameters (sunset delta #)
Acti Changes the sunset delta value that is set in the home properties on the Location tab.
ction This is the number of minutes to add or subtract from the computed sunset time to be
more accurate for your location. Returns the value it was set to before the change was
made.
Example _SetSunsetDelta (20) > 6
Name ThisProgram
Result type String
Parameters None
Action Returns the 2-part name of the running program.
Example _ThisProgram() — “Garden - Watering”
Name ThisFolder
Result type String
Parameters None
X Operates like _ThisProgram — to return the name of the running program — but only
Action
returns the folder part.
Example _ThisProgram() — “Garden”
Name TileUpdate
Result type Bool
Parameters (“tile name”, code#, [x], [y])
Action Updates the names tile based upon the parameters.
Code | Use Arg3 Argl
0 Change label Label text Not used
1 Change colors Background color Text color
2 Change image path Image path Not used
3 Change text Text Not used
4 Refresh Not used Not used
Example _TileUpdate (“StatusTile”, 0, “Good”) — yes (if there was a tile with that name, NO
otherwise).

54

The Home Control Assistant

Chapter 13—Expressions

Name VarValue

Result type Any

Parameters (“variable name”)

Acti Returns the value of the named variable given as a text string. If the variable doesn't
ction exist a global variable is created with default value of NO.

Example _VarValue(“Counter”) — 10

The Home Control Assistant
55

Chapter 13—Expressions

Abs, 10
AddressForDevice, 40
AlertAdd, 47
AlertClear, 48
AlertCount, 48
AlertLevel, 49
AlertName, 49

Asc, 7

Assign, 49
AutoOffTime, 21
BarometerConvert, 33
BarometerUnits, 33
ChangeSchedule, 21
Choose, 10

Chr, 7
CurrentScene, 22
CurrentSchedule, 23
CurrentWattage, 40
DarkSky, 32

Date, 14

DateTime, 14

Day, 14

DayNight, 24
DayOfWeek, 14
DayOfYear, 14
Days, 15

DecToHex, 7

Delay, 49
DelayShort, 49
DesignClose, 41
DesignName, 41
DesignOpen, 40
DesignSave, 50
DesignTitle, 41
DeviceForAddress, 41
DimDownPercent, 24
DimPercent, 24
DimToPercent, 24
DimUpPercent, 25
FileClose, 36
FileExists, 36
FileLoad, 36
FileOpen, 36
FileReadString, 37
FileWriteString, 37
Formatint, 19
FormatNum, 19
FormatPatten, 19
FormatTime, 20
GetDeviceKind, 41
GetDeviceMake, 42

56

GetDeviceModel, 42
GetDeviceProtocol, 42
GetFolder, 50
GetObject, 50
GetObjectProperty, 42
GetThermostat, 31
GroupMemberCount, 43
GroupMemberName, 43
HCAFolder, 37
HCASystemAction, 50
HCAVersionGE, 51
HexToAscii, 10
HexToDec, 7
HomeMode, 43
HostNameTolP, 51
Hour, 15

Hours, 15

Hue, 25
HueColorCreate, 25
HumidityUnits, 33
IconChange, 26
IconChangeEx, 26
IconExists, 26

IIF, 11

InsteonBeep, 27
InStr, 7

Int, 11
InterfaceName, 51
InterfaceRestart, 52
InterfaceStatus, 52
IsBool, 11
IsCurrentSchedule, 27
IsDate, 11

IsDim, 27

IsDisabled, 27

IsEven, 11
IsInErrorState, 27
IsNumber, 12

IsOdd, 12

IsOff, 28

IsOn, 28

IsRunning, 28
IsSuspended, 28
IsText, 12
IsValidObject, 43
Json, 38

JsonClose, 38
JsonCurrentKey, 39
JsonCurrentValue, 39
JsonDown, 38
JsonNext, 39

The Home Control Assistant

JsonOpen, 38
JsonPrev, 39
JsonUp, 39
LastControlTime, 43
LastReceptionTime, 44
Lcase, 8

Left, 8

Len, 8

LocalToUTC, 15
LTrim, 8
MakeValidName, 52
Match, 8

Max, 12

Mid, 9

Min, 12

Minute, 15
Minutes, 15
ModifySchedule, 21
Month, 16
MonthName, 16
Now, 16

Num, 13
ObjectTagClear, 44
ObjectTagDelete, 44
ObjectTagExists, 44
ObjectTagGet, 45
ObjectTagSet, 45
Off, 29

On, 29

ParseTime, 16
PgmNote, 52
PlaySound, 52
ProblemLevel, 53
RainConvert, 33
RainUnits, 33

Rand, 53
ReportAdd, 53

RGB, 53

Right, 9

Round, 13

RTrim, 9

Second, 16

The Home Control Assistant

Chapter 13—Expressions

Seconds, 16
SetCurrentState, 29
SetCurrentWattage, 45
SetHomeMode, 29
SetObjectProperty, 45
SetRunAgainTime, 30
SetSchedule, 30
SetSunriseDelta, 53
SetSunsetDelta, 54
SetThermostat, 31
SetToScene, 30
SolarRadiationunits, 33
StartProgram, 30
Statistics, 46

Status, 46

Sunrise, 17

Sunset, 17
TempConvert, 34
TempUnits, 34
TextPiece, 9
TextReplace, 9
ThisFolder, 54
ThisProgram, 54
TileUpdate, 54

Time, 17

TimeSpan, 17
TotalHours, 17
TotalMinutes, 17
TotalSeconds, 18
Trim, 10

Ucase, 10
UTCTolocal, 18
UVUnits, 34
VarValue, 55
WeatherGet, 32
Weekday, 18
WeekdayName, 18
WindDirection, 34
WindDirUnits, 34
WindSpeedConvert, 34
WindSpeedUnits, 35
Year, 18

57

